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Introduction
       Previous papers have used two important functions for the solution of fractional order

differential equations, the Mittag-Leffler function [ ]q
q atE  (1903a, 1903b, 1905), and the

F-function [ ]F a tq , of Hartley & Lorenzo (1998).  These functions provided direct solution and

important understanding for the fundamental linear fractional order differential equation and for
the related initial value problem (Hartley and Lorenzo, 1999).
      This paper examines related functions and their Laplace transforms. Presented for
consideration are two generalized functions, the R -function and the G -function, useful in
analysis and as a basis for computation in the fractional calculus. The R -function is unique in
that it contains all of the derivatives and integrals of the F-function. The R -function also returns
itself on qth order differ-integration. An example application of the R -function is provided.  A
further generalization of the R -function, called the G -function brings in the effects of repeated
and partially repeated fractional poles.

Functions for the Fractional Calculus
     This section summarizes a number of functions that have been found useful in the solution
of problems of the fractional calculus and more particularly in the solution of fractional
differential equations.

Mittag-Leffler Function
The Mittag-Leffler (1903, 1903, 1905) function is given by the following equation
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This function will often appear with the argument −at q ,  its Laplace transform then, is given as
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Agarwal’s Function
The Mittag-Leffler function is generalized by Agarwal (1953) as follows
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This function is particularly interesting to the fractional order system theory due to its Laplace
transform, given by Agarwal as
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This function is the ( )α β− order fractional derivative of the F-function, (of Robotnov (1969)

and Hartley (1998)), with argument a =1, to be presented later.

Erdelyi’s Function
Erdelyi (1954) has studied the following related generalization of the Mittag-Leffler function
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where the powers of t are integer. The Laplace transform of this function is given by
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As this function cannot be easily generalized it will not be considered further.

Robotnov and Hartley’s Function
To effect the direct solution of the fundamental linear fractional order differential equation

the following function was introduced (Hartley and Lorenzo, 1998)
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This function had been studied earlier by Robotnov (1969, 1980) with respect to hereditary
integrals for application to solid mechanics. The important feature of this function is the power
and simplicity of its Laplace transform, namely
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Miller and Ross’ Function
Miller and Ross (1993, pp.80 and 309-351) introduce another function as the basis of the

solution of the fractional order initial value problem. It is defined as the v th integral of the
exponential function, that is
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where ( )γ ∗ v at, is the incomplete gamma function. The Laplace transform of equation (9)
follows directly as
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which is a special case of the F-function of Robotnov and Hartley.

The above functions are studied in considerable detail by their originators and others. The
interested reader is directed to the supplied references.

A Generalized Function
      It is of significant usefulness to develop a generalized function which when fractionally
differintegrated (by any order) returns itself. Such a function would greatly ease the analysis
of fractional order differential equations. To this end the following is proposed, consider
the function
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Our interest in this function will normally be for the solution of fractional differential equations
for the range of .0=> ct   For Rct ,< will be complex except for the cases when the exponent

( )( )vqn −−+ 11  is integer. The more compact notation
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is also useful, particularly when c = 0.
The Laplace transform of the R -function is
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Consider first the case for c = 0,  then we have
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Now from (Erdelyi et al, 1954)
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This can be written as a geometric series that converges when .1<qsa It can be shown, by

long division, that
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Now for c ≠ 0the shifting theorem for the Laplace transform (Wylie p. 281) is
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where the unit step function ( )u t b− effectively causes ( )f t b− = 0for t b< . Under the

assumption that [ ] 0,,, =tcaR vq for t c< , this theorem and the result (equation 19) are applied

to yield
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Table 1, in a later section, presents a summary of the defining series and respective Laplace
transforms for the functions discussed in this paper.

Properties of the Rq,v(a,c,t)Function
The general time domain character of the R -function is shown in figures 1, 2, and 3.  Figure 1
shows the effect of variations in q with 0=v and .1±=a The exponential character of the

function is readily observed (see, q =1). Figure 2 shows the effect of v on the behavior of the

R -function.  The effect of the characteristic time a is shown in figure 3.  The characteristic time is

1/ aq . For q a=1 1, / is the time constant, when q = 2 we have the natural frequency, when q
takes on other values we have the generalized characteristic time (or generalized time constant).

Figure 1b. Effect of q on ( ),,0,10, tRq −
0.1,0.0 −== av

Figure 1a. Effect of q on ( ),,0,10, tRq
0.1,0.0 == av
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( )tRv v ,0,1on ,25.0 −
0.1,25.0 −== aq

Figure 2b. Effect of ( )tRv v ,0,1on ,50.0 −
0.1,50.0 −== aq

Figure 2c. Effect of ( )tRv v ,0,1on ,75.0 −
0.1,75.0 −== aq

Figure 2a. Effect of

Figure 2d. Effect of ( )tRv v ,0,1on ,00.1 −
0.1,00.1 −== aq
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Eigen-property
The R -function also has the eigenfunction character under qth order differintegration with

.0=v This is seen as follows. Consider
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The right most term in equation (26) is zero for ct ≠ , thus, for ct > the final result is
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Thus, for 1=a the function is seen to return itself under qth order differentiation.

Differintegration of the R-Function
It is of interest to determine the differintegral of the R -function, that is
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Oldham and Spanier (1974 p.67) prove the following useful form (equation (23) repeated)
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8

Relationship Between mqq,R  and 0,qR

     From the definition of R we can write
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Recognizing the first summation on the right hand side as ( ),,,0, tcaRq  gives the final result as;
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It is noted, that when ( )r q+ ≤1 0 and integer the elements of the summation term vanish.

Fractional Impulse Function
Consider the function ( ),,0,00, tRq  then we can write,
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From equation  (19) the associated Laplace transform pair is given by;
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Relationship of the R-function to the Elementary Functions
     Many of the elementary functions are special cases of the R -function. Some of these are
illustrated here.

 Exponential Function
     Consider ( )taR ,0,0,1 , by definition, we have
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Sine Function

    Consider ( )taRa ,0,2
0,2 − , by definition, we have
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Cosine Function

     The cosine function relates to ( ),,0,2
1,2 taR −  again by definition
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Hyperbolic Sine and Cosine

Consider ( )taRa ,0,2
0,2 , by definition, we have
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In similar manner
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R-Function Identities

Trigonometric Based Identities
A number of identities involving the R -function may be readily shown based on the

elementary functions. The exponential function, equation (40)
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     Then from equation (42)

( ) ( ) ( )50,,0,sin 2
0,2 xaRaax −=

and expressing the sine function in complex exponential terms gives

( ) ( ) ( )51.
2

1
sin xixi ee

i
x −−=

NASA/TP—1999-209424
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Combining equations (49) ,(50) and (51) then yields the identity

( ) ( ) ( )( ) ( )52.,0,-0
2

1
,0,1 1,00,10,2 xiR,xi,R

i
xR −=−

In similar manner using the cosine function, equation (44)

( ) ( ) ( ) ( )53,
2

1
,0,1cos 1,2

xixi eexRx −+=−=

from which

( ) ( ) ( )( ) ( )54.,0,+0
2

1
,0,1 1,00,11,2 xiR,xi,RxR −=−

The hyperbolic functions may also be used as a basis, using sinh function, yields

( ) ( ) ( )( ) ( )55.,0,1-01
2

1
,0,1 1,00,10,2 xR,x,RxR −=

The cosh function gives

( ) ( ) ( )( ) ( )56.,0,1+01
2

1
,0,1 1,00,11,2 xR,x,RxR −=

Many other identities may be found based on the known trigonometric identities, a few examples
follow, from

( ) ( ) ( )57,1cossin 22 =+ xx

we have

( ) ( ) ( )58.1,0,1,0,1 2
2,1

2
2,0 =−+− xRxR

From the identity

( ) ( ) ( ) ( )59,cossin22sin xxx =

derives
( ) ( ) ( ) ( )60.,0,1,0,122,0,1 1,20,20,2 xRxRxR −−=−

From the trigonometric identity

( ) ( ) ( ) ( )61,sin4sin33sin 3 xxx −=

we determine the identity

( ) ( ) ( ) ( )62.,0,14,0,133,0,1 3
2,00,20,2 xRxRxR −−−=−

Further Identities
Other identities may be derived as follows. Let v q p= − ,  then the Laplace transform of the

R -function may be written as

( ){ } ( ) ( )63.
1s

=,0,, assas
taRL

qqpq

pq

pqq +
=

+
− −

−

−

NASA/TP—1999-209424
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This may be rearranged to give

( ) ( )64.1
11







+
−+=

+− as

a

sass qpqqp

Inverse transforming gives the identity

( ) ( ) ( ) ( )65.,0,,0,0=,0, 0,, taaRtRtaR ppqq −−−−

Another set of identities follows by factoring the denominator of Laplace transform, thus

( ) ( )( ) ( )66.
1

,0,
2/12/2/12/ 







+−

=
−

⇔
asas

s
as

s
taR

qq

v

q

v

q,v

Now a partial fraction expansion of the denominator gives

( )67.2

1

2

1

2

1

2

1

2/12/

2/1

2/12/

2/1

2/12/

2/1

2/12/

2/1

















+
−

−
=
















+
−

−
=

as

s
a

as

s
a

as
a

as
as

q

v

q

v

qq
v

Taking the inverse transform, yields

( ) ( ) ( ){ } ( )68.,0,,0,
2

1
,0, 2/1

,2/
2/1

,2/2/1 taRtaR
a

taR vqvqq,v −−=

Very many more such identities are possible, indeed because of the generality of the R -function,
powerful meta-identities may be possible.

Relationship of the R-Function to Other Functions
The generality of the R -function allows it to be related to many other functions. In this

section it will be related to the important functions discussed in the introductory section of the
paper.  The Laplace transform facilitates determination of the desired relationships.  The double
arrow will be used to indicate the transform pairs, thus for the R -function;

( ) ( ) ( )690Re,,, >−
−

⇔ vq
as

s
tcaR

q

v

vq

Mittag-Leffler’s Function
     The Mittag-Leffler function and its transform relate to the L-function as;

[ ] ( ) ( )70.,0,1,

1

taR
as

s
atE qqq

q
q

q −⇔
+

⇔− −

−

The time domain relationship is

( ) [ ] ( )
( ) ( )71.

1
,0,

0
1, ∑

∞

=
− +Γ

−=−=−
n

nqn
q

qqq qn

ta
taEtaR

Also, because [ ] ( )[ ],,,,, ,, tcaRtcaRd vqvqtc −=− +α
α  it follows that

( ) ( )[ ] ( )72.,,0,
1 q

qq
q
tc ctaEtcaRd −−=−−

NASA/TP—1999-209424
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Argarwal’s Function
The Argarwal function and its transform relate to the R -function as follows;

[ ] ( ) ( )73.,0,1
1 ,, tR

s

s
tE pqqq

pq
q

pq −

−

⇔
−

⇔

The time domain relationship is

( ) [ ] ( ) ( )74.,0,1
0

1

,, ∑
∞

=

+−

− +Γ
==

n

pnq
q

pqpqq pnq

t
tEtR

Erdelyi’s Function
The relationship between the Erdelyi function and the R -function is given by

( ) [ ] ( ) ( )75.,0,1
0

1
,

1
, ∑

∞

=

−−
− +Γ

==
n

nq
q

qqq qn

t
ttEttR

β
β

β
β

β

Robotnov and Hartley Function
The F-function and its transform relate to the R -function as follows;

[ ] ( ) ( )76.,0,
1

, 0, taR
as

taF qqq −⇔
+

⇔−

The time series common to these functions is given as;

( ) [ ] ( ) ( )

( )( ) ( )77.
1

,,0,
0

11

0, ∑
∞

=

−+

+Γ
−=−=−

n

qnn

qq qn

ta
taFtaR

Miller and Ross’s Function
The Miller and Ross function and its transform relate to the R -function as follows

( ) ( ) ( )78.,0,, ,1 taR
as

s
avE v

v

t −

−

⇔
−

⇔

The time series common to these functions is given as;

( ) ( ) ( )
( ) ( )79.

1
,,0,

0
1 ∑

∞

=

+

− ++Γ
==

n

vnn

tv, vn

ta
avEtaR

Example - The Dynamic Thermocouple
This problem was introduced originally in Lorenzo and Hartley 1998, and frequency domain

solutions are presented there. Here, it is desired to determine the time domain dynamic response
of the thermocouple, figure 4, which is designed
to achieve rapid response. The thermocouple
consists of two dissimilar metals with a common
junction point. To achieve a high level of
dynamic response, the mass of the junction and
the diameter of the wire are minimized. Because
the wires are long and insulated they will be
treated as semi-infinite (heat) conductors. This
analysis will determine the time response of the
junction temperature ( )T sb  in response to the

k1 1,α

k2 2,α

Tg

( )Q ti

( )Q t2

( )Q t1

Tb

Figure 4.  Dynamic Thermocouple
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13

free stream gas temperature ( )T sg . For the semi-infinite conductors the conducted heat rate

( )Q t  is given by

( ) ( )80,2/1
btc

j

j
j TD

k
tQ

α
=

where k is the thermal conductivity and α  is the thermal diffusivity. For the transfer function
the effects of initialization are not required, therefore, all ( )ψ t 's  are zero. Thus the following
equations describe the time domain behavior:

( ) ( ) ( )( ) ( )81,tTtThAtQ bgi −=

( ) ( ) ( ) ( )( ) ( )82,
1

21
1

0 tQtQtQD
wc

tT it
v

b −−= −

( ) ( ) ( ) ( )( ) ( )83and,,0,,, 2
1

1
2/1

0

1

12/1
0

1

1
1 taTtTd

k
tTD

k
tQ bbtbt ψ

αα
+==

( ) ( ) ( ) ( )( ) ( )84,0,,, 2
1

2
2/1

0

2

22/1
0

2

2
2 taTtTd

k
tTD

k
tQ bbtbt ψ

αα
+==

where h A is the product of the convection heat transfer coefficient and the surface area and

wcv is the product of the junction mass and the specific heat of the material. Taking the Laplace
transform of these equations yields

( ) ( ) ( )( ) ( )85sTsThAsQ bgi −=

( ) ( ) ( ) ( )[ ] ( ) ( )86
11

321 




 +−−= ssQsQsQ

swc
sT i

v
b ψ

( ) ( ) ( )( ) ( )871
2/1

1

1
1 ssTs

k
sQ b ψ

α
+=

( ) ( ) ( )( ) ( )882
2/1

2

2
2 ssTs

k
sQ b ψ

α
+=

Eliminating the Q’s, and solving for ( )T sb yields

( ) ( ) ( ) ( ) ( ) ( )89,32

2

2
1

1

1
2/1

1













+−−





++

= sss
k

s
k

shAT
cbss

sT g
wc

b
v ψψ

α
ψ

α

where ,
1

2

2

1

1













+=
αα
kk

wc
b

v

 and .
vwc

hA
c =  Factoring the leading denominator and
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expanding in partial fractions gives

( ) ( ) ( ) ( ) ( ) ( )90,
1

32

2

2
1

1

1

2
2/1

1

1
2/1

1
2112













+−−





+

+
+

= −− sss
k

s
k

shAT
sswc

sT g
v

b ψψ
α

ψ
αββ

ββββ

where β1
2

2

1

2
4= + −

b
b c and β2

2

2

1

2
4= − −

b
b c . Then with appropriate choices for the

functions of s in the right most bracket this equation may be inverse transformed to yield the time
domain response.  To demonstrate the value of the R -function, we select (determine)

( ) ( ) ,/03 sTs b=ψ  Further assume ( ) ( ) ( ) ( )
T t T t T s

T

s sg b g
b= + ⇒ = +2 0

2 0 1
2 , and

( ) ( )ψ ψ1 2s s=  are arbitrary functions of time. The solution may be written directly as:

( ) ( ) ( ) ( ) ( )[
( ) ( ) ( ) ]

( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )91.,0,,0,0
1

,0,,0,
1

,0,,0,02

,0,,0,02

20,2/110,2/1
12

1

0

20,2/111/2,0

2

2

1

1

12

21/2,-221/2,-1

12,2/111/2,-1
12

tRtRT
wc

dtRtR
kk

wc

tRtRT

tRtRT
wc

hA
tT

b
v

t

v

b

b
v

b

ββ
ββ

ττψτβτβ
ααββ

ββ

ββ
ββ

−−−
−

+−−−−−









+

−

−−−−−

−+−
−

=

∫

−

Further Generalized Functions
Functions yet more general than the R -function may be developed. One such function will

be derived here. It is simpler here to work backward from the s-domain to the time domain. Thus,
we consider the following function

( ) ( ) ( )92
rq as

s
sG

−
=

ν

where ν , ,q  and r are not constrained to be integers. Then this may be written as

( ) ( )93.1
r

q
qrv

s

a
ssG

−
− 





 −=

Now the parenthetical expression may be expanded using the binomial theorem to give

( ) ( )
( ) ( ) ( )94,1,

11

1

0

<




 −

−−Γ+Γ
−Γ= ∑

∞

=

−
q

j

j

q
rq

s

a

s

a

rjj

r
ssG ν

or

( ) ( )
( ) ( )( ) ( )95.

11

1

0
∑
∞

=

−−−
−−Γ+Γ

−Γ=
j

jqrqj sa
rjj

r
sG ν
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This expression may be term by term inverse transformed yielding

[ ] ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )96.1,0Re,0Re,
11

1
,

0

1

,, <>>−
−+Γ−−Γ+Γ

−−Γ=∑
∞

=

−−+

q
j

qjrj

rq s

a
svqr

qjrrjj

tar
taG

ν

ν

ν

Thus we have the following transform pair

[ ]{ } ( ) ( ) ( ) ( )97.0,0Re,0Re,,,, >>>−
−

=
qrqrq s

a
svqr

as

s
taGL

ν

ν

The form of equation (96) presents evaluation difficulties, since when r  is an integer

( )Γ 1− r and ( )Γ 1− −j r  can become infinite.  Equation (96) maybe rewritten as follows: from

Spanier and Oldham (p.414, eq.43:5:5)

( ) ( )
( )( ) ( )

( ) ( )
( ) ( )98,2,1,0
1

1

21
�

�

=
−
Γ−=

−−−
Γ=−Γ n

x

x

nxxx

x
nx

n

n

where ( )1− x n  is the Pochhammer polynomial. From this result with x r= −1 , we can write

( ) ( )
( )( ) ( )

( ) ( )
( ) ( )99,2,1

11

11

1
1 �

�

=−Γ−=
−−−−−

−Γ=−−Γ j
r

r

jrrr

r
rj

j

j

Substituting this result in equation (96), yields the following more computable results

[ ] ( )( ) ( ){ }( ) ( )

( ) ( )( ) ( )100.
1

11
,

0

1

,, ∑
∞

=

−−+

−+Γ+Γ
−−−−−−=

j

qjrj

rq qjrj

tarjrr
taG

ν

ν

ν
�

or in terms of the Pochhammer polynomial

[ ] ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )101.1,0Re,0Re,
1

,
0

1

,, ∑
∞

=

−−+

<>>−
−+Γ+Γ

=
j

q

qjrj
j

rq s

a
svqr

qjrj

tar
taG

ν

ν

ν

In similar manner relationships of increasing generality may be determined. Podlubny (1999)
presents a form that is a special case of the G -function where r is constrained to be an integer. It
is also clear that taking r =1specializes the G -function into the R -function. It is the authors’
judgment that the F- and R -functions will prove to be the most useful in practical applications.
Table 1 summarizes the advanced functions studied in this paper along with their defining series
and Laplace Transforms.
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Summary
This paper has presented a new function for use in the fractional calculus, it is called the

R -function. The R -function is unique in that it contains all of the derivatives and integrals of
the F-function. The R -function has the eigen-property, that is it returns itself on qth order differ-
integration.  Special cases of the R -function also include the exponential function, the sine,
cosine, hyperbolic sine and hyperbolic cosine functions.  Further, the R -function contains, as
special cases; the Mittag-Leffler function, Agarwal's function, Erdelyi's function, Hartley's
F-function, and Miller and Ross's function.  Numerous identities are possible with the
R -function some of these have been shown in the text.

The value of the R -function is clearly demonstrated in the dynamic thermocouple problem
where it enables the analyst to directly inverse transform the Laplace domain solution,
(operational (s) form) to obtain the time domain solution.

A further generalization of the R -function, called the G -function brings in the effects of
repeated and partially repeated fractional poles. This generalization carries increased time
domain complexity.

A R -function based trigonometry is also possible.  It is a generalization of the conventional
trigonometry, and will be the subject of a future paper.

Table  1  Summary of Defining Series and Laplace

    Function        Time Expression Laplace Transform Remarks

Mittag-Leffler [ ] ( )E at
a t

nq
q

q
n nq

n

=
+=

∞

∑Γ 10 ( )
s

s s a

q

q −
( )q−1  differintegral of

Agarwal ( )
( )( )

( )E t
t

m
q

m q

m
α β

β α

α β,

/

=
+

+ −

=

∞

∑
1

0Γ
s

s

α β

α

−

−1

Erdelyi ( ) ( )E t
t

m

m

m
α β α β, =

+=

∞

∑Γ0

( )
( )∑

∞

=
++Γ

+Γ
0

1

1

m
msm

m
βα

0, >βα

Robotnov / Hartley [ ]
( )

( )( )F a t
a t

n qq

n n q

n

, =
+

+ −

=

∞

∑
1 1

0 1Γ
1

s aq −  eigenfunction

Miller-Ross ( ) ( )E v a
a t

v kt

k k v

k

, =
+ +

+

=

∞

∑Γ 10

s

s a

v−

−

Current Paper ( )
( )

( )( )∑
∞

=

−−+

−+Γ
=

0

11

,
1

,
n

vqnn

vq
vqn

ta
taR

s

s a

v

q − eigenfunction & differintegral

Current Paper ( )
( ) ( ) ( )( )

( ) ( ) ( )( )G a t
r a t

j r j q v
q v r

j
j r j q v

j
j

, , , =
−

− + + −

+ − −

=

∞

∑
1

0 1 1Γ Γ ( )
s

s a

v

q r−
eigenfunction & differintegrals

                                          repeated & partially rep.
l
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